Maximizing Organ Donation through Donor Management Goals

Mary Laird Warner, MD, FCCP
Medical Director, Intensive Care Unit
Swedish Medical Center

Associate Professor,
Pulmonary and Critical Care Medicine,
National Jewish Health
Maximizing Organ Donation

• Discuss the scope of organ donation needs statewide and nationally

• Review pathophysiology of organ dysfunction surrounding brain death

• Discuss intensive care management of the organ donor

• Review studies implementing donor management goals to maximize organs transplanted per donor

• Discuss implementation of donor management goals at Swedish Medical Center Intensive Care Unit
I have no conflicts of interest to disclose.
Levels of Evidence

• Retrospective studies
• Prospective studies with historical controls
• Randomized controlled trials
• Meta-analyses
The Need: Organ Recipient Wait Lists

Through 9/30/13

<table>
<thead>
<tr>
<th>Organ</th>
<th>United States</th>
<th>Colorado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>130,195</td>
<td>2,454</td>
</tr>
<tr>
<td>Kidney</td>
<td>104,773</td>
<td>1,683</td>
</tr>
<tr>
<td>Liver</td>
<td>16,530</td>
<td>621</td>
</tr>
<tr>
<td>Pancreas</td>
<td>1,185</td>
<td>24</td>
</tr>
<tr>
<td>Kidney / Pancreas</td>
<td>2,122</td>
<td>34</td>
</tr>
<tr>
<td>Heart</td>
<td>3,616</td>
<td>46</td>
</tr>
<tr>
<td>Lung</td>
<td>1,666</td>
<td>46</td>
</tr>
<tr>
<td>Heart / Lung</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Intestine</td>
<td>255</td>
<td>0</td>
</tr>
</tbody>
</table>
The Gift of Life

• One organ donor can save up to 8 lives.

• One tissue donor can impact up to 100 lives.

• One eye donor can restore eyesight to two people.
Potential Number of Organ per Donor

• Donation after Brain Death (BD):
 – Heart
 – Lungs (2)
 – Kidneys (2)
 – Liver
 – Pancreas
 – Small Intestine

• Donation after Cardiac Death (DCD):
 – Lungs (2)
 – Kidneys (2)
 – Liver
Pathophysiology of Brainstem Death

Increased intracranial pressure (ICP) causes

- Cushing’s reflex
- Catecholamine surge
- Visceral ischemia
- Pro-inflammatory state
- Disseminated intravascular coagulation
- Multi-organ failure
Pathophysiology of Brain Death: Cardiovascular Changes

- Catecholamine Storm
- Organ Hypoperfusion
- Cardiac Failure
- Shock
- Loss of Sympathetic Tone
Pathophysiology of Brain Death: Pulmonary Changes

↑ Pulmonary Hydrostatic Pressure

↑ Capillary Leak

Δ Oncotic Pressure

Pulmonary Edema
Pathophysiology of Brain Death: Endocrine and Metabolic Changes

Anterior Pituitary Failure:
- ↓ ACTH → Adrenal Insufficiency
- ↓ TSH → Sick Euthyroid

Posterior Pituitary Failure:
- ↓ Vasopressin → Diabetes Insipidus

Adrenal Insufficiency:
- ↓ Cortisol
- ↓ Insulin

Hypothermia
- ↓ Basal Metabolic Rate

Hypothalamic Failure
Care of the brain dead patient

- Progression from brain death to somatic death results in loss of up to 25% of potential donors.
- Intensive monitoring and balanced resuscitation of the donor are needed to maintain organ function and maximize number of organs suitable for transplantation.

Can J Anaesth. 2006: 53 (8); 820 – 820
Goals of Organ Donor Management

• Stabilize patient through catecholamine storm
• Provide balanced resuscitation to donor organs
• Target normal physiology
 – Temperature, hemodynamics, oxygenation, and metabolism
• Avoid positive fluid balance
“Rule of 100”

- Systolic blood pressure > 100 mm Hg
- Urine output > 100 mL/hr
- PaO2 > 100 mm Hg
- Hemoglobin > 100 g/L
Developing Clinical Pathways for Organ Donor Management

- United Network for Organ Sharing (UNOS) Critical Pathway for the Organ Donor – 1999
- Crystal City Consensus Conference – 2001
- Canadian Multidisciplinary Forum on Organ Donor Management – 2002
- “Bundling” Donor Management Goals – 2004 onward
UNOS Critical Pathway (CP): 1999 pilot study

• 5 overlapping phases of patient care from donor referral to organ recovery
 – Phase IV – Donor management

• Study design: 10 OPOs, 88 ICUs, 4-month prospective implementation of CP, compared with 4-month historical control period

• Outcome: Total number of organs recovered and transplanted per 100 donors

Cardio-Thoracic Donor Management

1. **Early echocardiogram for all donors** – Insert pulmonary artery catheter (PAC) to monitor patient management (placement of the PAC is particularly relevant in patients with an EF < 45% or on high dose inotropes.)
 - use aggressive donor resuscitation as outlined below

2. **Electrolytes**
 - Maintain Na < 150 meq/dl
 - Maintain K+ > 4.0
 - Correct acidosis with Na Bicarbonate and mild to moderate hyperventilation (pCO₂ 30–35 mm Hg)

3. **Ventilation** – Maintain tidal volume 10–15 ml/kg
 - keep peak airway pressures < 30 mm Hg
 - maintain a mild respiratory alkalosis (pCO₂ 30–35 mm Hg).

4. **Recommend use of hormonal resuscitation as part of a comprehensive donor management protocol** – Key elements
 - Tri-iodothyronine (T3): 4 mcg bolus; 3 mcg/hr continuous infusion
 - Arginine Vasopressin: 1 unit bolus; 0.5 – 4.0 unit/hour drip (titrate SVR 800–1200 using a PA catheter)
 - Methylprednisolone: 15 mg/kg/bolus (Repeat q 24 h PRN)
 - Insulin: drip at a minimum rate of 1 unit/hour (titrate blood glucose to 120–180 mg/dl)
 - Ventilator: (See above)
 - **Volume Resuscitation**: Use of colloid and avoidance of anemia are important in preventing pulmonary edema
 - albumin if PT and PTT are normal
 - fresh frozen plasma if PT and PTT abnormal (value ≥ 1.5 X control)
 - packed red blood cells to maintain a PCWP of 8–12 mm Hg and Hct > 10.0 mg/dl

5. **When patient is stabilized/optimized** repeat echocardiogram. (An unstable donor has not met 2 or more of the following criteria.)
 - Mean Arterial Pressure ≥ 60
 - CVP ≤ 12 mm Hg
 - PCWP ≤ 12 mm Hg
 - SVR 800–1200 dyne/sec/cm⁵
 - Cardiac Index ≥ 2.5 l/min/M²
 - Left Ventricular Stroke Work Index > 15
 - dopamine dosage < 10 mcg/kg/min
UNOS Critical Pathway (CP): 1999 pilot study

10.3% increase in total organs recovered

Table 1: Organs recovered

<table>
<thead>
<tr>
<th>Organ</th>
<th>Pre-Critical Pathway</th>
<th>Critical Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Per 100 donors</td>
</tr>
<tr>
<td>Kidney</td>
<td>255</td>
<td>182.1</td>
</tr>
<tr>
<td>Liver</td>
<td>119</td>
<td>85.0</td>
</tr>
<tr>
<td>Pancreas</td>
<td>33</td>
<td>23.6</td>
</tr>
<tr>
<td>Heart</td>
<td>77</td>
<td>55.0</td>
</tr>
<tr>
<td>Lung</td>
<td>45</td>
<td>32.1</td>
</tr>
<tr>
<td>Intestine</td>
<td>5</td>
<td>3.6</td>
</tr>
<tr>
<td>Total</td>
<td>534</td>
<td>381.4</td>
</tr>
</tbody>
</table>

Am J Transplant 2002; 2: 761-768
UNOS Critical Pathway (CP): 1999 pilot study

Table 2: Organs transplanted

<table>
<thead>
<tr>
<th>Organ</th>
<th>Pre-Critical Pathway</th>
<th>Critical Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Per 100 donors</td>
</tr>
<tr>
<td>Kidney</td>
<td>224</td>
<td>160.0</td>
</tr>
<tr>
<td>Liver</td>
<td>109</td>
<td>77.9</td>
</tr>
<tr>
<td>Pancreas</td>
<td>26</td>
<td>18.6</td>
</tr>
<tr>
<td>Heart</td>
<td>64</td>
<td>45.7</td>
</tr>
<tr>
<td>Lung</td>
<td>31</td>
<td>22.1</td>
</tr>
<tr>
<td>Intestine</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>454</td>
<td>324.3</td>
</tr>
</tbody>
</table>

19.5% increase in hearts transplanted

11.3% increase in all organs transplanted

Am J Transplant 2002; 2: 761-768
Hormonal Resuscitation

Combination of hormone supplements provided to replace those lost from failing hypothalamic-pituitary-adrenal axis

• Methylprednisolone
• Arginine Vasopressin
• Triiodothyronine (T3) or L-Thyroxin (T4)
• Insulin
Meta-analysis of thyroid hormone administration to brain dead potential organ donors

• 4 placebo-controlled RCTs
• 209 donors (108 Thyroid hormone rx; 101 placebo)

Results:
 – No significant effect of thyroid hormone on cardiac index
 – No benefit of combination hormonal therapies

Comment:
 – Limited numbers of hemodynamically unstable patients in donor pool may have missed a small treatment effect of thyroid hormone supplementation.

Crit Care Med. 2012 May; 40(5): 1635-44
Methylprednisolone

Reduces inflammatory response associated with brain death and hemodynamic instability

• Lung – Improves oxygenation, reduces capillary leak, increases, lung yield
• Decreases inflammation in heart, kidney, liver
• Increases overall organ retrieval
• Most effective when administered early

BJ Anaesthesia 2012; 108 (S1): i96-i107.
Achieving donor management goals before deceased donor procurement is associated with more organs transplanted per donor

• Retrospective study of whether meeting donor management goals (DMG) before procurement increases organs transplanted per donor (OTPD)

• Setting: UNOS Region 5, 5 SW states, 8 OPOs

• Intervention: Meeting 8+/ 10 DMG at time of organ recovery by protocolized patient care

Retrospective DMG Study

MAP 60 – 100 mm Hg

CVP 4 – 10 mm Hg

EF > 50%

Pressor ≤ 1; low dose

Thyroid hormone

ABG pH 7.30 – 7.45

PaO₂: FiO₂ > 300

Na 135 - 160 mEq/L

Glu < 150 mg/dL

UOP 0.5 – 3 mL/kg/hr

Retrospective DMG Study: Results

320 standard criteria donors, 3.6 ± 1.6 OTPD

Donors with 8+/10 DMG
- More OTPD (4.4 vs. 3.3, p<0.001)
- More likely 4+ OPTD (70% vs. 39%, p < 0.001)

Independent predictors of > 4 OTPD
- Donor-dependent criteria: Age, serum Creatinine
- Critical Care: Thyroid hormone administration
- Donor management goals met:
 - 8+/10 goals; specific DMGs

Retrospective DMG Study

Results

Achieving specific DMGs independently predicted ≥ 4 OTPD

- CVP 4 - 10 mm Hg (OR 1.9)
- EF > 50% (OR = 4.0)
- P:F > 300 (OR = 4.6)
- Na 135 – 160 mEq/L (OR = 3.4)

The impact of meeting donor management goals on the number of organs transplanted per donor: UNOS Region 5 DMG study

• Prospective, interventional study of whether meeting donor management goals increases organs transplanted per donor

• Setting: UNOS Region 5, 5 southwestern states, 8 organ procurement organizations, 2008 - 2009

• Time points:
 – Time of consent
 – 12 - 18 hours later
 – Time of organ recovery

Prospective UNOS 5 DMG Study

MAP 60 – 100 mm Hg
CVP 4 – 10 mm Hg
EF > 50%
VP ≤ 1 and low dose
ABG pH 7.30 – 7.45
PaO₂: FiO₂ > 300
Na 135-155 mEq/L
Glu < 150 mg/dL
UOP 0.5 – 3 mL/kg/hr

Prospective UNOS 5 DMG Study: Results

- 380 donors, 3.6 ± 1.7 OTPD

- 7+/ 9 DMG met over time:
 - 15% at time of consent
 - 33% at 12-18 hours
 - 48% at time of recovery

Prospective UNOS 5 DMG Study: Results

Independent predictors of > 4 OTPD

- 7+/9 DMG met at consent, recovery
- Increase in DMG met at 12-18 hr
- Age
- Serum creatinine

Optimization of donor management goals yields increased organ use

• Prospective interventional study of 8 DMGs during pre-recovery phase
• Setting: UNOS Region 11, 5 Southeastern states, 7 OPOs; from 2008 - 2009
• Intervention: Protocolized care to achieve 7+/8 DMGs prior to recovery.
• Analysis: Univariate and multivariate regression analysis correlating DMG with OTPD

UNOS Region 11 Prospective Study: Donor Management Goals

- MAP
- CVP
- pH
- \(\text{paO}_2 \)
- Na
- Glucose
- Single pressor use
- UOP

UNOS Region 11 Prospective Study: Results

- 805 donors, 2685 organs transplanted
 - Includes SCD, ECD, DCD
- All 8 DMGs met 18-66%
- OPTD
 - 2.85 - 2.96 < 8 DMGs met
 - 3.34 - 3.44 all 8 DMGs met
- Lung transplants increased 2.4 fold when all 8 DMGs met

UNOS Region 11 Prospective Study: Results

- DMGs maximizing OTPD
 - Low vasopressor use
 - P:F > 200
 - CVP 4 - 10
- DMG optimizing specific organs
 - Heart: Na, low vasopressor use
 - Lung: CVP, P:F
 - Pancreas: glucose control

Organ-specific management: Heart

- MAP 60-100 mmHg
- CVP 4 - 10 mmHg
- EF > 50 %
- Single vasopressor use & Low Dose
Organ-specific management: Lung

- CVP 4 – 10 mm Hg
- ABG pH 7.3 – 7.45
- P:F ratio > 300
Organ-specific management: Lung

• Lung recruitment maneuvers
• Early Bronchoscopy
• Serial CXR
• Turn, Suction, Mouth care Q 2hours
• CPT Q 4hours
• Vent Settings:
 – VT 10 – 12 mL/kg
 – PEEP 5
 – FiO$_2$ to SaO$_2$ > 90%
Effect of lung protective strategy for organ donors on eligibility and availability of lungs for transplantation

Design: RCT of conventional vs. lung protective ventilator management strategy

Setting: 118 patients (59 in each group)

Outcome:
1° - Eligibility criteria for lung recovery
2° - Lungs actually transplanted

JAMA 2010; 304: 2620 - 27
Effect of lung protective strategy for organ donors on eligibility and availability of lungs for transplantation

<table>
<thead>
<tr>
<th>Lung Protective Strategy</th>
<th>Conventional Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT 6-8 mL/kg IBW</td>
<td>VT 10-12 mL/kg IBW</td>
</tr>
<tr>
<td>PEEP 8-10 cm H₂O</td>
<td>PEEP 3-5 cm H₂O</td>
</tr>
<tr>
<td>Recruitment maneuvers</td>
<td>No recruitment</td>
</tr>
<tr>
<td>after vent disconnects</td>
<td>maneuvers</td>
</tr>
<tr>
<td>Apnea tests on CPAP</td>
<td>Apnea tests without CPAP</td>
</tr>
</tbody>
</table>

JAMA 2010; 304: 2620 - 27
Effect of lung protective strategy for organ donors on eligibility and availability of lungs for transplantation

Results: Lung protective strategy favored

Higher proportion of lungs met eligibility criteria
95% vs. 54% (p < 0.01)

Greater number of lungs transplanted
54% vs. 27% (p = 0.04)

JAMA 2010; 304: 2620 - 27
Organ-specific management: Kidney

- Use single pressor and low dose
- Urine Output 0.5 – 3mL/kg/hr over 4 hours
Effect of donor pretreatment with dopamine on graft function after kidney transplantation

- RCT, open-label, parallel study of 264 brain dead donors of 487 kidneys. 2004-2007. 60 European centers
- Intervention: randomized to low dose dopamine = 4 mcg/kg/min or none
- Outcomes: Need for dialysis in first week post transplant

JAMA. 2009 Sep 9; 302(10): 1067-75
Donor pretreatment with dopamine: Results

<table>
<thead>
<tr>
<th>Dialysis P value</th>
<th>DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>24.7%</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

Multiple dialyses associated with graft failure at 3 years. HR 3.61 (2.39-5.45)

JAMA. 2009 Sep 9; 302(10): 1067-75
Organ-specific management: Liver

• Maintain Na < 155
 Na > 155 can cause swelling after liver transplant
Organ-specific management: Pancreas and Intestine

Tight Glucose control < 150 mg/dL

OGT/NGT Low Intermittent Wall Suction
Role of Intensivist in Donor Management

Increase in organs recovered with close involvement of intensivist in donor care

66/210 → 113/258 potential organs recovered

Am J Transplant 2011; 11: 1-5
Swedish Medical Center: Organ Donation

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013 January-Sept (Annualized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain Dead Donors</td>
<td>17</td>
<td>11</td>
<td>15</td>
<td>10 (13)</td>
</tr>
<tr>
<td>DCD Donors</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Total Organs</td>
<td>61</td>
<td>44</td>
<td>58</td>
<td>40 (53)</td>
</tr>
<tr>
<td>OTPD</td>
<td>3.39</td>
<td>3.14</td>
<td>2.94</td>
<td>3.07</td>
</tr>
<tr>
<td>Timely Referral Rate</td>
<td>91%</td>
<td>96%</td>
<td>98%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Swedish Medical Center: Tissue and Eye Donation

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013 January – Sept (Annualized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue</td>
<td>80</td>
<td>53</td>
<td>62</td>
<td>47 (63)</td>
</tr>
<tr>
<td>Eye</td>
<td>91</td>
<td>96</td>
<td>95</td>
<td>106 (141)</td>
</tr>
</tbody>
</table>
National Goals for Organ Donation from HHS/HRSA

- Organs transplanted per Donor (OTPD) 3.75
- 10% of donations by DCD
- >97% Timely referral rate
 Within 60 minutes of clinical triggers
National Goals for Organ Donation from HHS/ HRSA

• OTPD 3.75
 SMC = 2.94 for 2012. 3.07 for 2013.

• 10% of donations to be DCD
 SMC = 25% for 2012. 23% for 2013.

• >97% Timely referral rate
 Within 60 minutes of clinical triggers
 SMC = 98% for 2012. 100% for 2013
Organ Viability Research Project at Swedish Medical Center

- **Focus:** Collect data of 9 DMGs from time of brain death declaration to DA management

- **Goal:** Develop protocol for donor management to increase OTPD > 3.7

- **Scope:** Prospective chart review, starting June 2013
SMC Donor Management Order Set

• Initiated at time of declaration of brain death
• Directs care of patient until Donor Alliance team arrives in ICU to assume donor care
• Targets 9 Donor Management Goals of UNOS 5 and UNOS 8 studies
• Protocolized fluid resuscitation followed by pressor administration
• Modifies ventilator management to target tidal volume 8-10 mL/kg